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FOREWORD

The principal purpose of this paper is to present methods for determinir.g

minimum- time ship routes on a digital computer. The paper was written in

two parts. The first treats in detail a numerical method for determining the

course which requires minimum time to go from one specified place to another

when the speed of the ship is a known function of position, heading, and time.

The second part of the paper treats various related topics. The first is

the corresponding problem in the simpler case wherein the speed is a function

of position and heading but not of time. The second is a discussion of methods

for obtaining the curves, called equal-time curves or isochrones, which yield

the maximum distance the ship can attain at any particular time by choosing

various courses. These are discussed for both the stationary and time-

varying speed fields; they are rather important because they are easily

understood and interpreted, and closely parallel numerical methods now in use.

Third, the problem of effecting rendezvous between two ships is treated.

Finally a brief discussion is given of various problems and difficulaties which

may be encountered in computation.

It has been the intention particularly in the first part to give the numerical

routines and associated discussions in sufficient detail that a person familiar

with numerical methods and computers could immediately program and run

the problem. The method is based on procedures which G. A. Bliss introduced

in ballistics for calculating differentials. These are applied in a Newton-

Raphsan iteration to determine the course. It is the author's opinion that the

major outstanding part of the ship- routing problem is the collection of re-

liable empirical data describing the speed of the ship.

It is hoped that this paper will serve as an introduction to the adjoint sys-

tem, calculus of variations, and optimum control theory along lines which are

currently being actively pursued in this country and in Russia, including a

method of solution. The first part of this paper has been accepted for publica-

tion in NAVIGATION, Journal of the Institute of Navigation.
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A GENERAL NUMERICAL METHOD FOR DETERMINING OPTIMUM SHIP

ROUTES

Frank D. Faulkner*

A method is given for determining optimum ship routes on a
digital computer. This paper is limited to the problem of deter-
mining minimum time courses when the speed is a known function of
the position, heading, and time.

The method is based on Bliss's methods for calculating dif-
ferentials, usually applied in a Newton iteration to determine
the course. It is very general, but it requires a knowledge of
Bliss's adjoint methods. The paper is selfcontained; a simple
case is given in detail and ethers outlined. The advent of high-
speed digital computers in the past few years now makes the solu-
tion of such problems feasible

»

1. Statement of problem

.

We shall take the equations of motion to be expressed in the
form

(1) |
x = v cos p

iy = v sin p

where x,y are position coordinates, p ls a control variable,
v = v(x,y,p,t) is a known function of period 21T m p with

;

oontinuous derivatives, t is time, and the dot (
) over a

variable indicates its time derivative. If x ,y are reotang.
ular coordinates, then v is the speed and p is the angle
oetween the velocity vector and the x axis , the heading angle;

Ite Scho°o
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if they are, say, latitude and longitude, then there is no such

simple interpretation..

We will consider first the problem of going from one specified

point, (0,0), to another, (X,Y) , with minimum time To The problem

is to choose the control variable p as a function of time to ef-

fect this, and to determine the corresponding curve in x,y,t space.

In a later section general conditions will be given for minimum

time courses, as in rendezvous, etc. , and corner conditions which

would be of interest for a sailboat which must tacko

2. Variational equations, Euler equations <>

~
;

In this section some formulas for differentials are derived,

by procedures which G. A„ Bliss introduced in Ballistics . Let us

consider two neighboring paths, whereon the values of p differ

r
T

i i

by an amount 6p; it is assumed that |6p| dt is small. Then
Jo

the change 6x,6y in x,y satisfy the variational equations

(bx = v 6x cos p + v 6y cos p + (v cos p - v sin p)6p

(2) .

l&y = v
x
^x sin P + v

v^y
sin P + (v sin p + v cos p)6p;

subscripts here indicate partial derivatives, v = dv/fix, etc
A

Let us multiply these two equations through by two new

variables a,^ (unspecified at present but to be identified at

some stage as Lagrange multipliers), collect terms, and Integrate

to get

(3) [A(6x - v 6x cos p - v 6y cos p - v 6p cos p + v6p sin p)
Jo

x y p

+ l/^(6y - v
x
&x sin p - v 6y sin p - v 6p sin p - v6p cos p)]dt

= 0o

We may integrate this by parts and rewrite it as
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r t

(4) [^6x + A^y] = [ox(1\ +Xv
x
cos p +/uv

x
sin p) +

+ 6y(y£/ + Xv cos p + uv sin p)

+ 6p(A(v cos p - v sin p}- +yu{v sin p + v cos p})]dt

t1+

l"

\
t
l
+

- [v(/\cos p +usln p) ] 6t,

where t-. is a symbol for any point,, or points where p is dis-

continuous as a function of time, a steering corner . Probably

there will be no such point for ships and we shall drop the last

term for the present . To simplify this equation, let us choose

AtJJ as solutions to the system

A + Av cos p +/jv sin p =
x r / x *

u + av cos p + /^v,
r
sin p = ,

(5)
*

V lJ + AV COR t> 4- JJV
y

so that the coefficients of 6x,6y in (4) vanish. This defines

the system (5) which is ad,joint to the system (3)°

In the case of most interest, the initial values of x,y are

assumed known; then 6x(0) = = 6y(0), and (4) becomes

(6) "X(T)6x(T) + ^(T)&y(T) =

= [A(v cos p - v sin p) +aj(v sin p + v cos p)]6p dt
Jo p / P

Jo
&p dt,

where A = \i +^5 and v = v(i cos p + "J sin p) . This is the

fundamental differential formula connecting the change in end

values of x,y with the variation of the control variable,,

It is a very general condition for 'any optimum that there is

some solution A to the adjoint system, to be found in the solu-

tion of the problem, and for that solution, * must satisfy the

condition
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(7) A°v = extreme,

as a function of the control variable p at every point of the

course. This condition implies that the coefficient of 6p in

(6) vanish

(8) /W
p

= 9

for that solution. Comment . The proof of this condition is es-

sentially the proof of the fundamental lemma in the calculus of

variations (see Courant*[l] p 200) . Cases wherein it does not

determine a unique path are easily constructed , but seem to be of

little practical significance and will not be considered further.

Equations (5)» (8) are called the Euler equations in calculus

of variations. The curves whereon equations (1),(5)>(8) are satis-

fied are called extremals of the family (1). Equation (7) or

(8) may be replaced by the condition that p be chosen so that

(9) A-y dt = extreme;
Jo

this approach has received considerable attention recently through

the work of the Russian mathematician Pontriagin [2] on control.

The various philosophies of approach represented by (7) »

(8), (9) are equivalent for this problem, and none eliminates

the basic problem of solution; namely, conditions are given at

two values of t, (0,T), with the second one unknown, and a con-

stant is needed to Integrate equations (1),(5)»(8). In the next

sections a method of solution is given

3. Differential formulas

.

Let us consider a fundamental set of solutions for (5) » say

*Numbers in brackets refer to references listed at the end
)f the paper.
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'X ,y *\ u taken so that at t = these have the values

1,0,0,1, respectively^ Then every set of solutions is a linear

combination of these two« Now the fundamental equation (6) is

linear and homogeneous in the pair \ 9u so that a multiplicative

factor will drop out from the formulas for 6x 9 6y D Hence we

may express all solutions of interest in terms of a single param-

eter a

( A = A, cos a +7\ ?
sin a

t u = /u^cos a + yuusin a
(10)

in so far as the use of this formula is concernedo An extremal

which starts at the origin at t = is characterized by the

value of a except for the terminal time T 9 and the problem

of determining^ ^ '"course reduces to that of finding a,T.

It is shown in the appendix that for extremals a differential

change in a leads to a differential change 6x(T) ,6y(T) in

x,y at* T

(11)

where

(12)

6x = -= -J^(T )oa

6y = JA(T)6a

J =

fT ( 2 2,'/a

(v +v ) \\
dt

> i^ 2 Jo 0?y?r A/2
/^l/2 t=T

If both a,T are changed the resulting differential changes

in the terminal values are

Ax(T) = x(T)6T - «Lu(T)&a

Ay(T) = y(T)6T + JA(T)6a
(13)
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4. Computational routine <,

Let us guess initially values for a,T 9 say a ,T o

Then integrate simultaneously the original equations, a funda-

mental set \ 1
,/u, ^p ^H 2 of solutions to the adjoint system (6),

with a,lj determined then by (10) and p determined by (8);

calculate also the integral Jo

A curve thus determined will not go to the desired poin^

X,Y generally, but to, say, X, ,¥, , where i is the itera-

tion index. In equation (13) > set

, Ax
1

= X - X
±

(Ay
i

= Y - Y
±

and determine 6a
i9

6T 9
a *,-\ = a.+6a,, T

1+1
= T.+6T.0

Continue this until some convergence criterion is satis-

fied, say,

(X - X^ 2
+ (Y - Y

i
)

2
< £ ,

where £ is a prescribed number.

Of course, if a,T are guessed too far from the correct values

it may not converge; this has not been a problem so far a

5. General end conditions

«

In the most general case we may have a function g(x,y,t) to

be minimized, or maximized at the terminal point, subject to N

constraints of the form

hn (x,y,t) = 0, n = l, oooN

There may be none, one 9 or two of these (N = 0,1, or 2), In this

case the conditions on the end values s called the transversal con-

ditions, which must be satisfied for a stationary value of g are
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first (see Bliss [G] , pZ03)

ehn/ex
eh
n/6y

dhn/dt^ ]
(Nx3)

(15) rank { 6g/6x dg/dy dg/cU ) = N+l

"> yJ ->x ^yj t=T

and second, the rank of the matrix obtained by omitting either of

the last two rows must also be N+lo

The first N rows of the above matrix are the coefficients

of Ax, Ay, 6T in Ah , the next row are from Ag, and the last

row is the corresponding set of coefficients in the differential

formula (6) rewritten in the form

(16) [>ax +^Ay -(>x+L/y)6T]
t=T

= A°v 6p dt.

In the problem studied first, this reduces to the condition

(Ax +JJy)m ^ 0, and is always satisfied,.

One way to determine the path is to guess a,T as before.

The correctional routines may be obtained from

Ahn = eh
n/exAx + 6hn/dyAy + ah

n/dt6T 9

and it may be necessary to use

r AMT) = ?\(T)6T + (8V6a)
T
6a

LA//(T) =/J(T)6T + (^/ea)
T
6a c

The differentials are chosen to drive residual errors to zero.

Example . Consider the problem of getting to any point

where x assumes a specified value X 9 in minimum time, with

no constraint on y The matrix of (15) is then

10
1

A y ~akyjy)<
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Hence >u(T) = 0. This yields one relation

&u = (-^..sin a + a7
2
cos a)6a + >u(T)6T = yj(T)

for 6a, 6T; the equation for Ax in (13)

is the other equation needecL

An alternate procedure is to continue the computation

until x = X; this determines T« <> Then a, . , is obtained
' i 1+1

by setting /j(T) =/-^
1 1

cos a. , +//,

2 i
sin ai+i

= Oo -^ seems

that the only ingenuity required is in guessing starting values

and in setting up correction routines from (15) 9 typical compute

ing problems . As this example shows 9 the correction routines are

not unique and some may converge better than others.

6. Comments.

In a simple example requiring about 100 time steps, each

iteration took about one second and a path was obtained in from

four to twenty seconds on the CDC 1604 , depending on the function

v and the initial guesses; this could well be decreased if

desired. On the other hand, the use of empirical data and the

attendant calculations will undoubted increase the time.

There are two other possible methods of solution of this

problem. If the function v is independent of t, then the

order of the system may be reduced by eliminating the time t.

The resulting Euler equation is of order two and may be solved

by a relaxation procedure (Haltiner
9
Hamilton

9
'Arnason [3]).. A

limited comparison suggests that the differential correction

procedure converges more rapidly if the number of

time steps is large. No way is seen to extend the relaxation

method to differential systems of higher order* The only other
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method goes by various names; steepest descent or ascent, and

gradient. It is based on a corrective routine similar to the

constructive proof of the fundamental lemma of the calculus of

variations (Courant [l] p 200) , Discussions suggest that all

have uncertainties associated with convergence.

Corner condition. If there are any corners (points of the

curve where v is discontinuous) then the differential formulas
fc

l
+

(6) and (15) need a term added -[vCXcos p +yusin p)] 6t,

for each point. For the values of K 9u associated with an ex-

tremal, this vanishes (but does not vanish generally if X = X-, ,

u -P\ t etc.). A program is needed to check for this condition,

if it may occur, since the values of p(t,-)j p(t-,+) are not

close to each other. Implicit in the derivation of the above

correction is that the transients introduced by "coming about"

are negligible.

Many important conditions which must be checked to ensure

that the resulting curve affords a minimum must be neglected in

a short paper. These are covered completely , though tersely,

by Bliss ([6] chapters 7,8). Many of these have no significance

until a path is obtained,,

As applied to ship routing ? these have also been discussed

by de Jong [4] , ^contains a discussion of several interest-

ing cases of particular interest in air navigation The direc-

tion perpendicular to A defines the curves of constant time

associated with the extremals from the origin. An alternate

method of determining minimum courses is to determine these

isochrones y as done by Hanssen and James [5] 9
except to use

extremals and the transversal conditions,, This may be done
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on the computer, as outlined in some preliminary reports

[10] and sections 8 and 10 of this paper

.

This method of solution is an application of the methods

which Bliss [8] introduced for calculating differentials in

ballistics (see also Bliss [9], Ch. V for summary, and p. 125

for other references).
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Part II OPTIMUM SHIP ROUTING

Introduction

Various other aspects of optimum ship routing are taken up here. The

next sections treat the case where the velocity field does not change signifi-

cantly with time, and may be considered constant over short periods. The

differential equations are then of lower order and the problem is simpler.

Two methods of solution are discussed. Each makes use of extremals,

which are the minimum-time curves, or brachistrochrones , at least Over

short distances. These may be used together with a relation known as

"transversality" to determine equal-time curves, or isochrones. These de-

fine the boundary to the points which the ship can reach at any particular

time: it can generally reach any point up to and on these equal-time curves,

but no point beyond them at the corresponding time; also points on the iso-

chrones can be attained only by extremals. The shortest-time route may be

determined from these. A second method of solution is given for finding

the shorte st- time route directly without using the isochrones.

Next the problem of determining the equal- time curves is taken up for

the case where the velocity field varies rapidly or significantly with time.

Then some routines are given for effecting rendezvous between two ships,

(a) wnen one ship is following a known course, and (b) when the two ships

cooperate. Finally a brief discussion is given of problems which may be

encounters .1 in the computation.
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/ Constant Velocity Field, Euler Equations, Transversals.

In this section it will be assumed that the speed v is

a function of position and heading, but not time, v = v(x,y,y'),

where x,y are position coordinates, and y° = dy/dx For

simplicity, we will generally choose the coordinate set so that

the initial point is the origin and the final point (X,0)

is on the x axis.

The Euler equation, which is a necessary condition for

minimum time will be derived now. If x,y are cartesian coord-

inates, the time required to go a short distance along a curve

is approximately

(17) t = as/v = jl+y'
2 x/v ,

and the time to go along any selected curve is then

(18) T =
I

f(x,y,y')dx;
'0

this defines f = \'l+y' /v. If x,y are not cartesian

coordinates, there are corresponding relations, depending on

the metric of the coordinate set.

Let us consider two neighboring paths. On the second,

y_> y + 6y
(19)

y' > y» + 6y'
,

where (oy)' = 6(y' ) , and — < means "is replaced by". The
i X

integral Uy'l dx is "small". The difference in the time
J

required to follow the two courses may be approximated then

(
x

(20) 6T = (f 6y + f ,6y')dx + f(x,y,y«) ycX ;

)q j y x=a

subscripts in the integrand indicate corresponding partial



-1/+- Pa #32

derivatives. Let us integrate this by parts to eliminate 6y'

from the integrand

r X X
(21) 6T = (f - df ,/dx)6y dx + f(x,y,yM y6X +[f ,6y] .

jo y y A y o

If the end points are fixed, then 6X = 6y(0) = 6y(X) = 0. If

T is a minimum, because of the choice of path, then 6T must

vanish for all allowed functions 6y. Since 6y is arbitrary

except for being "small" and vanishing at the endpoints of the

curve, it follows that

< 22 » kfy - f
y = °-

This is the well-known Euler equation and is a necessary

condition (assuming that f has continuous second derivatives

and f
, , 4 0); see Bliss [6], p. llf for a proof. We may

rewrite this as

(23> y"-=7^ (fy- y'Vy- fyr>'

which is of the form y" = F(x,y,y')° It may also be rewritten

as a pair of first-order equations, by introducing a new variable

y' = z

(24)
z' = P(x,y ,z)

,

which is convenient for computations „ It should be observed

that since (23) is of second order, there are two constants of

integration and an extremal is determined if the values of y,y'

are given for some value of x; since y(0) = in our problem,

there is a single constant of integration to be determined.

The curves defined by (22) or (23) are called extremals .

Transversals. The equations for curves which correspond

to equal times along different extremals of a family, such as
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the family passing through a given point, will be derived now.

If the endpoint (X,Y) is not fixed, but may vary, then

the terms in equation (21) associated with it do not necessarily

vanish. Since we are interested in shortest-time routes, we

will consider only extremals, so that the integrand and the inte-

gral vanish. Now the change in the final value of y is

(25) 6Y = 6y(X) + y'(X)6X ^ H6y(X)

(see sketch), y
1 being the value ^J--

on the extremal. Equation (21) 6X

X.)

becomes Relations among

, , % r , -. variations of
(26) 6T = [f6X + (cY - y'6X)f J

y A end values.

Now if we have a one-parameter family of extremals such

as those coming from a given point, then the various points,

one on each extremal , which correspond to the same value of T

will be obtained by setting 6T = 0. That is, from (25) and

(26),

(27) 6Y - [y> - f/f ,]X6X
= 0;

this is the defining relation for the transversal direction

6Y/6X. A curve S which cuts each of a family [eJ of extre-

mals transversally is transversal to the family, or is a

transversal of the family. Its equation is

(28) dY/dX = y» - f/f
, ;

dY/dX is the slope of S and y' is the value on the cor-
Q

responding extremal.

And if we are given a smooth curve S, then there is a

family of extremals JEj which satisfy (28). The family
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so defined represents the curves of shortest time from the

transversal S, at least if the distances are not too great.

Comment. Sometimes the transversals are perpendicular

to the extremals. It may "be easily verified that this is the

case for an arbitrary family of extremals if and only if f

has the form f = g(x,y)il+y' ; in the ship-routing problem

this is the case if v is independent of the heading.

8. Numerical routine.

A method of determining a minimum-time ship course is

now given. It is similar to the method described by Hanssen

and James [5] (pp259»260) except that it makes use of the

results just derived, involving extremals and transversals

„

Let us take the set of extremals which emanate from the

starting point. Calculate a family of these with the initial

heading angle as a parameter, say taking values of tan y'(0)

one degree or ten degrees apart, using the Euler equation.

Continue these for say six or twenty-four hours „ The value of

t must be obtained by integration and the terminal point will

involve interpolation. At the endpoints determine also, from

(28) the transveral direction.

We now have a set of points on the equal-time curve and

the corresponding direction. Fit a curve, using this

data. It is not the most common type of data since not only

is the point given, but also the slope. Name this curve S/-,

or S p^, as the case may be. It represents the maximum distance
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the ship can be at that time, based on the initial velocity-

field.

Now revise or update the velocity field to correspond to

the values forecast for six or twenty-fours ahead. Then take

the one-parameter family of extremals which cut S^ , or S
? li*

transversally. The slopes of each extremal is given by equation

(28), with revised values for v, for the continuing extremals.

As many extremals as desired can be drawn out from S/. With

each extremal that is continued from S^ associate the corres-

ponding value of y'(0).

Continue these out for another six or twenty-four hours

and generate another transversal S,
? , or S^o. Update the

field and continue until a transversal hits the desired terminal

point. Interpolate to get the initial heading and the route.

This method has the desirable feature that the results

may be easily interpreted, particularly by those already cal-

culating minimum time routes by present methods On the other

hand it requires unnecessary computing to determing one route.

9. Alternate numerical routine.

It is felt that the following method will generally

determine a route more quickly.

Let us consider equations (24). The equations for the

variations of an extremal are

6y' = 6z
(29)

Let us guess an initial value for y' . Then compute the

6z' = F £y + F 6z.
y z
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corresponding extremal E , which will probably not go through

the desired endpoint (X,0). Simultaneously, compute a solution

to (29) , with 6y(0) = and any convenient value of 6z(0)
,

since the system is homogeneous and linear in 6y 9 6z The

value of y(x) will be in error, say it is Y . Treat 6y(X)

as a difference; set 6y(X) = - Y and solve for 6z = 6y'(0).

This gives a corrected value for y'(0). Continue this until

the terminal value differs from the desired value of y by

less than some preasslgned number, the convergence criterion.

The values for the velocity field could be updated regularly

every six hours as before, if desired. A limited number of

computations suggests that this will give a solution quickly.

Comment. There is a condition for an extremal to yeld

a minimum value for the integral , called the non-tangency con-

dition. If at any point cy as obtained from (29) above is

zero, the corresponding point is on the envelope of the family

of extremals and does not furnish a minimum value to the integral

In this case a warning should be given to the operator, or

a corresponding subroutine generated. This will probably

never occur for short courses.

10. Isochrones for time-varying field.

A method is given here for constructing the isochrones

when the velocity field varies with time, and for determining

the minimum time course by the method of section 8.

Let us consider various extremals starting from the origin;

each is determined by a value of a in equation (10) , and

by equations (1),(5),(8). At every point of each extremal E
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the relation between the velocity v, the solution A to the ad-

joint, the extremal E and the isochrone S is as indicated in

the figure. Let ' be the curve defined by the allowed velocity

v at P, with p as a parameter

„

Then the heading p is chosen so

that v has a maximum projection

onto A , see section 2„ The
-a

curve S perpendicular to A at

P is generated by small changes Interrelations between

extremal E, velocity v,
in the parameter a; it is a trans- _

solution A to adjoint,
versal of the family . The lmpor- and the isoChrone So

tant property of S is that all

points on it and to its left in some neighborhood can be reached

at that time, no points to the left can be, and points of S

are attained only by extremals • That is, S is part of the

boundary of a closed region whose points are exactly the points

where the ship may be at that time t„

We then get points on a curve S and the tangent direction..

These define the isochrone S(t)« A relatively small number of

points is required to define S since the tangent direction is

also given; this tends to be offset by the fact that v is given

from empirical data If t is small enough, the curve S is

similar to a circle or an arc thereofc If the isochrone S is

given, it must be emphasized that the normal to it determines

A , and that the extremals are not generally perpendicular to S„

The first isochrone S(t) which touches the specified terminal
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point obviously yields the minimum- time route. The value of

T and the parameter a must be determined by interpolation*

If the total time exceeds the time that forecasting can be

done reliably, then the extremals may be replaced by terminal

segments of great circle routes, the extremals for a uniform

velocity field, as done by Hanssen and James [5] (p 26l) , or

statistical data may be used as the basis for determining v.

Whatever data is "most reliable" should be used; the results

can be no more reliable than the data,,

11. Rendezvous between ships.

Two ships will be said to rendezvous if at some time

their positions coincide. It is assumed that the time required

for the terminal maneuvering is negligible compared to the

total time spent.

In the first example, let the position of the second

ship be denoted by x*,y*, these being known functions of

time. As before (see section 4), we guess values for the

parameters of the extremal, a,T. In the correction routine

for these we must allow for the distance the second ship

will travel if we change T by an amount 6To In place of

equations (13), (1^) , use

x* - x = (x - x*)6T - yuj6a
(29) '

y* - y = (y - y*)&T + Aj&a,

for corrections 6a, &T to the estimates of a,T, all quan-

tities in (29) being evaluated at t = T after the first

estimate of the trajectory has been calculatedo J was defined

by equation (12).
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The corrected values for a,T are used and another

course computed. This Is continued until the distance be-

tween the two is less than some preassigned number, at the

end of a computation.

Cooperating ships. The problem is more interesting

if the second ship cooperates. Let quantities associated

with the second ship be denoted by an asterisk (*). For

rendezvous, there must be a time T such that x(T) = x*(T),

y(T) = y*(T). There is a further condition that

(30) A(T) II /\*(T)
;

the vectors defined by the adjoint systems must be parallel

at time T. That is, if H = (Xp* - ^V)m then

(3D H = 0.

We will need also the differential change in A,u in

our computational routine. If we change a,T by small amounts,

we get a differential change in the terminal values

t

aX = [-X^Tjsin a +7\
2
(T)cos a ]6a + A(T)6T

(32)
Ap = L-^

1
(T)sin a + /^

2
(T)cos a]6a + >u(T)6T

and two more , exactly like these, with starred terms, asso-

ciated with the second ship.

Computational routine. Guess a,a*,T and calculate a

first approximation to the courses for the two ships. Let

the values at the end of the i'th iteration be x
1
,y.,x*,y*.

Generally x. £ x*, or y.^ y* , or A is not parallel to A
at t = To Use the differential formulas as differences to
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drive the errors or residuals to zero:

x* - x
1

= (x^ - x*)6T - Jjjba + J**y*6a*

y* - y , = (y - y*)6T + J>6a - J*:\*&a*

(33)
-fAv* yA*)

1
=
fy*

+%* - />** y7**)6T

+ [(-Xsin a ^AgCos aV^* -(-/LA, sin a +^2 cos a)A*]6a

-[(-/\?sin a* +;\|cos a*W -(-yu'ij'sin a* +*j|cos a*)/\ ]6a*.

If this converges, it yields a stationary value of T. The

computation would be continued until some convergence criterion

2 2 ?
is satisfied, say until (x^x*) + (y^y*) + H < s , where

c is a preas signed number.

An alternate procedure is the following. Suppose the co-

orinates are chosen so that the first ship is initially at (0,0)

and the second at (X,0) , with X > 0. Guess a, a* as before

and compute the two extremals , stopping when at some time t =

T , x = x*. Equations (33) again constitute a set of three

equations for three unknowns, though only two of these, 6a, 6a*,

are needed to start the next iteration.

An alternate method would be to determine the isochrones

S(t),S*(t) for each ship, by the method described in section

10, continuing until they touch. Since (or if) they are smooth

curves, S and S* are tangent to one another at the first

time of contact. This is equivalent to condition (3D, that

AHA , since A and S are always perpendicular.
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12. Comments

As remarked initially the first purpose of this paper has been

to give a method for determining optimum ship routes . It may have

given however an impression that the problem is simpler than it

actually is. In this section a brief discussion is given of some

situations which may arise, which are' not treated earlier,.

It should be remarked that the routine given converges to

a stationary value of time, which may not be a minimum,. This is

particularly the case for long routes , where a course not near

that chosen may yield a smaller value of time D There is some con-

dition which is an extension of the envelope condition in elemen-

tary calculus of variations, and the well-known conditions of

Weierstrass and Legendre (see Bliss [6], chapter 8)„ This does

not lessen the value of this paper, since these conditions can

be checked only after a course has been determined,,

The envelope condition in the simplest case states that if

an extremal furnishes an extreme value to an integral, then it

cannot contain a focal point or a point of the envelope of the

family of extremals from the initial point,, For the simplest

problems this can be checked by checking to see if 6y is zero

at any point of the course, but no simple check is known generally

to the author

.

If the course is determined by the method of isochrones, then

it is suspected that the lsochrone will then develope an interior

corner. Unfortunately the method of fitting the Isochrones will

probably have an implicit assumption of smoothness which may well

obscure the existence of the corner,, The difficulty is aggravated
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by the fact that the data is given empirically and we must try

to smooth out or minimize the random errors by a curve-fitting

or smoothing routine

„

For the initial part of the course we will surely be able

to predict accurately. For the later part, we may be required to

use statistical data, or in the absence of that, a terminal sec-

tion consisting of part of a great circle » If the times involved

are large, so that better data becomes available, the course

should be continually redetermined, using the current position

as the starting point. This is particularly important on long

routes, and when storms introduce large changes in the speed

which cannot be estimated accurately beforehand,,

It seems that time may well be too simple a cost function,,

Cargo damage, danger, passenger discomfort, etc, increase with

wave height. The cost function must be made up by someone

familiar with the details of shippingo In the best routing

procedures, several activities must be coordinatedo (1) First,

the .meteorologist or oceanographer must collect the data and

predict sea state, and weather, too, if it is significant,,

(2) A cost engineer familiar with the ship and its cargo must

make up a realistic cost function in terms of time, danger,

etc. (3) The mathematical framework is given here. (4) Finally,

there is no little problem of programming properly D Some study

needs' to be made of methods of smoothing the data, so that the

derivatives, which are notoriously poor when the data is poor,

are satisfactorily smooth. The success of the method depends

on the integrated efforts of all of these.
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Finally, let us consider a problem where the above routine

breaks down. Let us consider a sailboat in a narrow channel

where hills on either side slow down the wlndo Let us consider

speed in the form v = v (1 - y /w )(1 - 2 cos p) , where v

and w are constants. It is easily verified that the maximum

speed upwind (in the direction of the positive x axis is v /^«

However, to effect this, the boat must come about an infinite

number of times; this is known in control theory as the"chattering"

solution. The above-given routine is too simple for this problem:

the time spent coming about and the ensuing transients are not

negligible. It seems to the author that some feel for the

mechanics of such problems is necessary in the programmer, that

one must suspect beforehand that such events are likely. These

seem to be of little importance with powered ships and were not

investigated in any detail.
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Appehdix. In this section the differential formulas
-» -•

of section 3 are derived. Let a 1 ,a 2 denote as before the so-

-* -4

lutions to the adjoint system which have initial values i,j,

resp. Let a = Aj^cos a + A 2 sin a, as before and a = |a|.
—» —

Then A ? = A 1
2cos2 a + A 2

2 sin2 a + 2 A^AgSin a cos a c Let

x = Vcos p, y = V sin p, and denote the "velocity" by V;

lower case ^v was used earlier. Lower case symbols will be
—» — —

<

used to denote unit vectors in this section, V = Vv , a =

aw. Then

7 = V J + Vn,
P P '—•——»—» —

»

where n = k*v. If u is the unit vector parallel to V
,

then
-» T-» .—

»

u = k x a/a

and'

V
p

= y(V
p
2+V2

) u

—• -
on every extremal, since V »A 5 0.

Now let us consider at the same time and place two ex-

tremals differing by small amounts 6p,6a Then

(A.l) V
pp

-A 6p + V
p
-A

a
6a = 0.

Now also

PP P P p'

= l^lp^- fi$L% Ml -AW

So

(A. 2) V .a = V(V2+V 2) A

Now consider also

xThe terms to the right of the parallel bars || in the

right-hand margin will be used to suggest the operations by

which the next equation is obtained.
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Let also

then

V -.'A = = V »(AiCos a + A«sin a)
p P

P
2 = (Vp-A^a* (V

p
oA 2 )2 ;

sin a = -V "Ai/p , cos a = V °A 8/p

and

(A. 3) V
n*

A
a

= Vr,°(-A i sin a + A 2 cos a)

= p«

Hence from (A 1) ,(A.2) ,(A 3)

6p = p6a/(A,/[V2+V
p
2]),

and the differential formula (6) derived earlier becomes

when a = a x

T
(X x 6x + Ui6y) T = -f (p 2 sin a/A)dt da

i J

for extremals. But

P 2 = [^yt+Y^feS.^]* + [y(V2+V
p
2)2^A 2 ]

2

= p ^[(Ajcos a + A 2 sin a) °a 1
x£] 2

a 2
L

+ [(AiCos a + A 2 sin a) °a 2 x£] 2
}

Hence

and

V2+V 2 \ ± X 2

-V- Mi M 2 o

pT y2+V 2

^ X J
A 3

Xi x 2

Hi M 2

X 2 6x + |.i26y)
T

r
T va+v 2

=
I —_p_
J

A 8

Xj. x 2

Ml M 2

dt sin a 6a
,

I-M2

dt cos a 6a .

II Ml
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Hence

6x(T) =

6y(T) =

J m(T) 6a

J X(T) 6a,

the values of X,u being those associated with the maximizing

condition and

J =

Xi X 2 I

Ml M 2 I T

r
1 v2+v 2

Jo -J*
Xi. x 2

Ml M2
dt

This derivation seems long and complex but no simplification

has been found, and the corresponding three-dimensional formula

has so far defied derivation. A . q % w
Frank D Faulkner 5 June 1962

Monterey, Calif*
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